About 317 results
Open links in new tab
  1. Optimizers - Keras

    Base Optimizer API These methods and attributes are common to all Keras optimizers. [source] Optimizer class keras.optimizers.Optimizer()

  2. Optimizers - Keras

    Optimizers SGD RMSprop Adam AdamW Adadelta Adagrad Adamax Adafactor Nadam Ftrl [source] apply_gradients method Optimizer.apply_gradients( grads_and_vars, name=None, …

  3. SGD - Keras

    learning_rate: A float, a keras.optimizers.schedules.LearningRateSchedule instance, or a callable that takes no arguments and returns the actual value to use.

  4. Ftrl - Keras

    learning_rate: A float, a keras.optimizers.schedules.LearningRateSchedule instance, or a callable that takes no arguments and returns the actual value to use.

  5. Adam - Keras

    learning_rate: A float, a keras.optimizers.schedules.LearningRateSchedule instance, or a callable that takes no arguments and returns the actual value to use.

  6. Lamb - Keras

    learning_rate: A float, a keras.optimizers.schedules.LearningRateSchedule instance, or a callable that takes no arguments and returns the actual value to use.

  7. ExponentialDecay - Keras

    If the argument staircase is True, then step / decay_steps is an integer division and the decayed learning rate follows a staircase function. You can pass this schedule directly into a …

  8. Muon - Keras

    learning_rate: A float, keras.optimizers.schedules.LearningRateSchedule instance, or a callable that takes no arguments and returns the actual value to use. The learning rate.

  9. LearningRateSchedule - Keras

    Several built-in learning rate schedules are available, such as keras.optimizers.schedules.ExponentialDecay or keras.optimizers.schedules.PiecewiseConstantDecay:

  10. LossScaleOptimizer - Keras

    If wrapping a tf.keras.optimizers.Optimizer, hyperparameters can be accessed and set on the LossScaleOptimizer, which will be delegated to the wrapped optimizer.